Second-order problems
This section includes direct integration methods for linear dynamic equations of the form
\[ Mx''(t) + Cx'(t) + Kx(t) = F(t)\]
In the context of structural dynamics problems, $M$ is the mass matrix, $C$ is the viscous damping matrix, $K$ is the stiffness matrix, $F$ is the vector of applied forces, and $x(t)$, $x'(t)$ and $x''(t)$ are the displacement, velocity and acceleration vectors, respectively.
The following algorithms are available:
- Central difference method.
- Houbolt's method.
- Newmark's method.
- Bathe integration method with equal-size substeps ($\gamma = 0.5$).
The theoretical description of such methods can be found in Chapter 9, [BATHE]; see also the references appearing in each docstring.
Central difference
StructuralDynamicsODESolvers.CentralDifference
— Typestruct CentralDifference{N} <: StructuralDynamicsODESolvers.AbstractSolver
Central difference scheme with given step-size.
Fields
Δt
– step-size
Houbolt
StructuralDynamicsODESolvers.Houbolt
— Typestruct Houbolt{N} <: StructuralDynamicsODESolvers.AbstractSolver
Houbolt's integration scheme with given step-size.
Fields
Δt
– step-size
References
See [HOU50].
Newmark
StructuralDynamicsODESolvers.Linear
— FunctionLinear(Δt::N)
Linear integration scheme. Special case of Newmark with $δ=1/2$ and $α=1/6$.
StructuralDynamicsODESolvers.Newmark
— Typestruct Newmark{N} <: StructuralDynamicsODESolvers.AbstractSolver
Newmark's integration scheme with given step-size and parameters α
and δ
.
Fields
Δt
– step-sizeα
– parameter α of the methodδ
– parameter δ of the method
References
See [NEW59].
StructuralDynamicsODESolvers.Trapezoidal
— FunctionTrapezoidal(Δt::N)
Trapezoidal integration scheme. Special case of Newmark with $δ=1/2$ and $α=1/4$.
Bathe
StructuralDynamicsODESolvers.Bathe
— Typestruct Bathe{N} <: StructuralDynamicsODESolvers.AbstractSolver
Bathe's integration scheme with sub-steps of equal size.
Fields
Δt
– step-sizeα
– parameter α of the methodδ
– parameter δ of the method
References
See [BAT07].